排序算法¶
「排序算法 sorting algorithm」用于对一组数据按照特定顺序进行排列。排序算法有着广泛的应用,因为有序数据通常能够被更高效地查找、分析和处理。
如下图所示,排序算法中的数据类型可以是整数、浮点数、字符或字符串等。排序的判断规则可根据需求设定,如数字大小、字符 ASCII 码顺序或自定义规则。
评价维度¶
运行效率:我们期望排序算法的时间复杂度尽量低,且总体操作数量较少(时间复杂度中的常数项变小)。对于大数据量的情况,运行效率显得尤为重要。
就地性:顾名思义,「原地排序」通过在原数组上直接操作实现排序,无须借助额外的辅助数组,从而节省内存。通常情况下,原地排序的数据搬运操作较少,运行速度也更快。
稳定性:「稳定排序」在完成排序后,相等元素在数组中的相对顺序不发生改变。
稳定排序是多级排序场景的必要条件。假设我们有一个存储学生信息的表格,第 1 列和第 2 列分别是姓名和年龄。在这种情况下,「非稳定排序」可能导致输入数据的有序性丧失:
# 输入数据是按照姓名排序好的
# (name, age)
('A', 19)
('B', 18)
('C', 21)
('D', 19)
('E', 23)
# 假设使用非稳定排序算法按年龄排序列表,
# 结果中 ('D', 19) 和 ('A', 19) 的相对位置改变,
# 输入数据按姓名排序的性质丢失
('B', 18)
('D', 19)
('A', 19)
('C', 21)
('E', 23)
自适应性:「自适应排序」的时间复杂度会受输入数据的影响,即最佳时间复杂度、最差时间复杂度、平均时间复杂度并不完全相等。
自适应性需要根据具体情况来评估。如果最差时间复杂度差于平均时间复杂度,说明排序算法在某些数据下性能可能劣化,因此被视为负面属性;而如果最佳时间复杂度优于平均时间复杂度,则被视为正面属性。
是否基于比较:「基于比较的排序」依赖比较运算符(\(<\)、\(=\)、\(>\))来判断元素的相对顺序,从而排序整个数组,理论最优时间复杂度为 \(O(n \log n)\) 。而「非比较排序」不使用比较运算符,时间复杂度可达 \(O(n)\) ,但其通用性相对较差。
理想排序算法¶
运行快、原地、稳定、正向自适应、通用性好。显然,迄今为止尚未发现兼具以上所有特性的排序算法。因此,在选择排序算法时,需要根据具体的数据特点和问题需求来决定。
接下来,我们将共同学习各种排序算法,并基于上述评价维度对各个排序算法的优缺点进行分析。